

SQL Interface Option Guide
6.4

Advantage CA-Easytrieve Plus
Report Generator

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without
the prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright
laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2003 Computer Associates International, Inc.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents iii

 Contents

Chapter 1: Overview
Topics ... 1-1
Related Publications... 1-2
Revision Summary for DB2 for OS/390 and z/OS Elements 1-2
Programming Methods .. 1-2

Native SQL Statements .. 1-3
Automatic Cursor Management .. 1-3

SQL Statement Rules .. 1-3

Chapter 2: Program Environment
Units of Work .. 2-1
PARM Statement Parameters... 2-2

All SQL Environments ... 2-3
DB2 for OS/390 and z/OS ... 2-4
DB2 for VSE .. 2-5
CA-Datacom/DB ... 2-6
ORACLE ... 2-6
CA-IDMS... 2-6

Qualifying DB2 for OS/390 and z/OS Tables .. 2-7
Qualification with Automatic Processing .. 2-7
Qualification with Controlled Processing .. 2-8

SQL Error Handling.. 2-10
SQL Error Message Format.. 2-10
SQL Error Message Text .. 2-11

iv SQL Interface Option Guide

Chapter 3: Library Section Definition
SQL Catalog INCLUDE Facility...3-1
SQL INCLUDE Statement ..3-2

Syntax ..3-2
Parameters ..3-2
Notes...3-3
Field Reference ..3-4
Qualifying SQL Column Names...3-5

Processing NULLable Fields..3-6
Manual NULL Processing ..3-6

SQL Data Types ...3-7
Decimal Data Types..3-8
SQL Syntax Checking ..3-9

System-Defined File Fields ...3-9
RECORD-COUNT ...3-9
RECORD-LENGTH ..3-9

SQL Communications Area Fields...3-9
Sample Database ...3-12

Working Storage Definitions...3-12

Chapter 4: Automatic Processing
Specifying Automatic Input ..4-1
FILE Statement ..4-2
JOB Statement...4-3
SELECT Statement...4-4

Generated Code ...4-7

Chapter 5: Controlled Processing
GET Statement ..5-1

Syntax ..5-1
Native SQL ...5-2

Syntax ..5-2
Usage Notes...5-2
Processing Requirements ...5-6
Operation ...5-6

Contents v

CALL Statement .. 5-6
CALL Syntax: Format 1 .. 5-6
CALL Syntax: Format 2 .. 5-7

CALL, ASSOCIATE, and ALLOCATE .. 5-7

Chapter 6: Executing Your SQL Program
DB2 for OS/390 and z/OS Execution ... 6-1

Dynamic SQL Mode ... 6-1
Static SQL Mode .. 6-1
Sample Job Stream .. 6-2

PAN$SQL DD File .. 6-2
EZTPDB2 Procedure .. 6-4

Execution JCL... 6-6
Procedure Overrides .. 6-7
JCL Modifications ... 6-8
Mixed IMS and DB2 for OS/390 and z/OS Execution ... 6-8

DB2 for VSE Execution ... 6-10
CA-IDMS/SQL Execution .. 6-10
CA-Datacom/SQL Execution ... 6-12
ORACLE Execution .. 6-13

Chapter 7: Examples
Automatic Retrieval ... 7-1

Automatic Retrieval: All Columns .. 7-1
Automatic Retrieval: Selected Columns.. 7-1
Automatic Retrieval: Multiple Tables.. 7-2
Automatic Retrieval: SQL FILE ... 7-2
Automatic Retrieval: SQL FILE ... 7-3
Automatic Retrieval: SQL FILE Using SQL Functions ... 7-3
Automatic Retrieval: SQL FILE With NULL Indicators.. 7-3
Automatic Retrieval: SQL FILE With Synchronized File Processing............................. 7-4

Controlled Retrieval... 7-5
Native SQL: All Columns .. 7-5
Native SQL: Reassign Departments ... 7-6
Native SQL: Update Phone Numbers.. 7-7
Native SQL: SQL FILE ... 7-8

vi SQL Interface Option Guide

Index

Overview 1–1

Chapter

1 Overview

This guide explains the optional product facilities that interface with the
following SQL databases:

■ IBM DB2 for OS/390 and z/OS

■ IBM DB2 for VSE (SQL/DS)

■ Jasmine CA-Datacom/DB for SQL

■ Jasmine CA-IDMS SQL

■ ORACLE

Before CA-Easytrieve Plus can process these databases, the Jasmine
CA-Pan/SQL Interface product, version 2.4, must be correctly installed. See the
CA-Pan/SQL SQL Interface Getting Started for complete information.

To use this facility effectively, you should have a basic knowledge of SQL and
the given database management system to be processed.

Topics
This guide discusses the following topics:

■ Working environments for SQL

■ Host variable definitions

■ Automatic table processing

■ Native SQL commands and the GET command as used in controlled
processing

■ JCL

Related Publications

1–2 SQL Interface Option Guide

Related Publications
The following publication, produced by Computer Associates, is either
referenced in this documentation or is recommended reading:

■ CA-Pan/SQL SQL Interface Getting Started

The following publications, not produced by Computer Associates, are either
referenced in this documentation or are recommended reading:

■ ORACLE Installation and System Administration Guide

■ IBM DB2 Reference Manual

Revision Summary for DB2 for OS/390 and z/OS Elements
The SQL interface for has the following enhancements:

1. Support of DSNALI Above the Line

 Release 4.1 of DB2 for OS/390 and z/OS linked DSNALI as AMODE 31. This
caused DSNALI to be loaded Above The Line.

2. Validation of Host Variable Datatypes at Compile Time

3. Support of CALL, ALLOCATE, and ASSOCIATE statements for
STATIC-ONLY processing..

 The CALL procedure, ALLOCATE cursor, and ASSOCIATE LOCATORS
statements are now supported by PanSQL for a BIND option of
STATIC-ONLY.

4. Support specification of a PLAN and SSID at execution time

 You can specify an execution time PLAN and SSID with a PAN$SQL DD file.
This enables you to run with a different planname on different subsystems.

5. Support for Execution of Statically Bound Applications under the TSO
Terminal Monitor Program

 This enables your called subroutines to be linked with DSNELI for both
Jasmine CA-Easytrieve applications and other language applications.

Programming Methods
There are two programming methods supported for processing SQL databases:

■ Using native SQL statements to manually manage the SQL cursor.

■ Permitting CA-Easytrieve Plus to automatically manage the SQL cursor.

SQL Statement Rules

Overview 1–3

Native SQL Statements

CA-Easytrieve Plus supports most of the SQL statements available for a given
DBMS. The exceptions are those statements that are compiler directives and
statements that cannot be dynamically prepared. Using these native SQL
statements, you can code fully SQL-compliant programs in which you control the
SQL cursor operation. All native SQL statements are prefixed with the SQL
keyword. A list of all supported and unsupported SQL commands is provided in
the section called Usage Notes.

Automatic Cursor Management

There are two ways that CA-Easytrieve Plus can manage the SQL cursor for you:

■ CA-Easytrieve Plus files

■ Automatic retrieval without a file

SQL Statement Rules
There are several differences in the rules when coding SQL control statements in
CA-Easytrieve Plus. The following syntax rules apply:

■ Operators must be separated by blanks.

■ Standard CA-Easytrieve Plus continuation conventions are followed.

■ Commas are not ignored.

■ The period is used as a qualification separator, not to signify
end-of-statement.

■ The colon is used to identify host/indicator variables, not as a qualification
separator.

■ An SQL statement cannot be followed by another statement on the same
source record.

Program Environment 2–1

Chapter

2 Program Environment

CA-Easytrieve Plus processes SQL statements using the CA-Pan/SQL Interface
product. A specific implementation exists for each supported database:

■ For DB2 for OS/390 and z/OS, a dynamic and static interface are supported.

■ For DB2 for VSE, extended dynamic SQL is supported. SQL statements are
dynamically prepared during the compilation of your CA-Easytrieve Plus
program and an access module or package is created. At runtime, SQL
statements are executed from the access module or package.

■ The CA-Datacom/DB SQL interface is very similar to the DB2 for VSE
interface. An access plan is created at compile time from which SQL
statements are executed.

■ The CA-IDMS SQL interface is strictly a dynamic interface for both
compilation and execution.

■ The ORACLE interface is strictly a dynamic interface for both compilation
and execution.

Units of Work
Each CA-Easytrieve Plus activity is considered a separate SQL unit of work.

A COMMIT is executed following each JOB activity that contains SQL
statements. A ROLLBACK is automatically executed if an error condition is
detected or if you code a STOP EXECUTE statement in your program.

PARM Statement Parameters

2–2 SQL Interface Option Guide

PARM Statement Parameters
The following PARM statement parameters set the SQL environment for the
program:

For DB2 for OS/390 and z/OS:

■ SQLID

■ SSID

■ PLAN

■ BIND

■ SQLSYNTAX.

For DB2 for VSE:

■ USERID

■ PREPNAME

■ SQLSYNTAX.

For CA-Datacom/DB:

■ PLANOPTS

■ PREPNAME

■ SQLSYNTAX.

For ORACLE:

■ USERID

■ SSID

■ SQLSYNTAX.

For CA-IDMS:

■ USERID

■ SQLSYNTAX.

PARM Statement Parameters

Program Environment 2–3

All SQL Environments

In all environments, use the SQLSYNTAX parameter to specify the level of SQL
syntax checking to perform on the SQL statements in your program.

SQLSYNTAX FULL

SQLSYNTAX FULL indicates that SQL statements undergo detail-level syntax
checking. An SQL PREPARE statement executes for those SQL statements that
can be dynamically prepared. Your DBMS must be available to CA-Easytrieve
Plus.

SQLSYNTAX PARTIAL

SQLSYNTAX PARTIAL checks your SQL statements for valid commands and
secondary keywords. No connection is made to your DBMS unless you coded an
SQL INCLUDE statement in your program. Your program cannot execute until it
undergoes FULL syntax checking.

SQLSYNTAX NONE

You can use the SQLSYNTAX NONE parameter on the PARM statement with a
static bind if you want the DB2 for OS/390 and z/OS preprocessor to perform
syntax checking in a batch environment. An option of NONE performs partial
syntax checking on your program. If no partial level compile errors are found
and a BIND option of STATIC-ONLY is specified and no other non-SQL syntax
errors are found, your program continues to execution.

You can use SQLSYNTAX NONE with BIND STATIC-ONLY to process
unqualified tables. With SQLSYNTAX NONE, you eliminate the dynamic bind
which qualifies all unqualified tables. You can then set a qualifier when you
BIND the DBRM of the static-command-program.

PARM Statement Parameters

2–4 SQL Interface Option Guide

DB2 for OS/390 and z/OS

SQLID

The SQLID parameter of the PARM statement results in the SQL interface
executing the SQL SET CURRENT SQLID command at compile time. The SQL
SET CURRENT SQLID command is executed at runtime for automatic
processing. Execution of the SQL SET CURRENT SQLID command is valid for
sites that have an external security package that supports group IDS. It sets the
qualification of unqualified tables for dynamic SQL processing. See Qualifying
DB2 for OS/390 and z/OS Tables later in this chapter for more information.

It is recommended to use SQLSYNTAX NONE with BIND STATIC-ONLY rather
than SQLID to set the qualification for tables.

SSID Parameter

The SSID parameter of the PARM statement can explicitly specify the DB2 for
OS/390 and z/OS subsystem. If the SSID parameter is not coded, the SQL
interface gets the DB2 for OS/390 and z/OS subsystem ID from the DB2 for
OS/390 and z/OS system default module DSNHDECP. DSNHDECP is made
available through the JOBLIB or STEPLIB libraries.

The valid format is xxxx/yyyyyyyy, where xxxx is a valid DB2 for OS/390 and
z/OS subsystem ID and yyyyyyyy is a valid DB2 for OS/390 and z/OS location
ID. Neither value is required. You can specify either one. If you specify a location
ID, you must precede it with a slash, such as SSID=/yyyyyyyy.

Static SQL

Static SQL improves the performance of an SQL program. In a static SQL
program, all SQL statements are known ahead of time and an optimized plan is
created before execution time.

Static SQL is specified by two parameters on the PARM statement, PLAN and
BIND.

■ A PLAN parameter specifies the name of the DB2 for OS/390 and z/OS
static-command-program and its planname. The command program is
linked as a separate load module.

■ A BIND parameter of STATIC-ONLY or ANY generates the
static-command-program. Execution can be static or dynamic.

PARM Statement Parameters

Program Environment 2–5

To execute your program statically, you must run special steps to create and link
the static command program and plan. See the “Executing Your SQL Program”
chapter for more information.

DB2 for VSE

USERID

Specify the DB2 for VSE user ID and password to use for compiling the program
on the USERID parameter of the PARM statement.

■ For automatic processing, CA-Easytrieve Plus executes a CONNECT using
the same parameters.

■ For controlled processing, you must code a CONNECT statement to be the
first SQL statement the program executes.

PREPNAME

Specify the name of the DB2 for VSE access module for this program on the
PREPNAME parameter of the PARM statement. When an SQL program is
compiled, an access module is created or replaced. You should use unique access
module names for each application program to avoid using the default access
module.

In a high volume system, using the default PREPNAME can result in catalog
contention and a -911 SQLCODE resulting from a rollback.

SSID

Provide a database ID on the SSID parameter to connect to a non-default
database.

The valid format is yyyyyyyy, where yyyyyyyy is a valid database ID.

PARM Statement Parameters

2–6 SQL Interface Option Guide

CA-Datacom/DB

PLANOPTS

Use the PLANOPTS parameter on the PARM statement to specify the name of a
CA-Pan/SQL plan options module to override the default plan module
DQSMPLN@. See the CA-Pan/SQL SQL Interface Getting Started for more
information about defining your own options module.

PREPNAME

Specify the name of the plan and authorization ID to create the SQL plan for
CA-Datacom/DB. The plan is created using the options defined by the
CA-Pan/SQL plan options module.

ORACLE

USERID

Specify the user ID to use for compiling the ORACLE program on the USERID
parameter of the PARM statement. For more details on the USERID parameter,
refer to the “System Overview” chapter of the Reference Guide.

SSID

■ The SSID parameter of the PARM statement can specify the appropriate
subsystem. Refer to the “System Overview” chapter and the “Options Table”
appendix in the Reference Guide for more details on the SSID parameter.

■ You can also specify the subsystem through an ORA@ssid DD statement.
Refer to your ORACLE Installation and System Administration Guide for more
details on using the ORA@ssid DD statement.

CA-IDMS

USERID

Specify the user ID to use for compiling the CA-IDMS program on the USERID
parameter of the PARM statement. For more details on the USERID parameter,
refer to the “System Overview” chapter of the Reference Guide.

Qualifying DB2 for OS/390 and z/OS Tables

Program Environment 2–7

Qualifying DB2 for OS/390 and z/OS Tables
Unqualified tables are implicitly qualified by the primary authorization ID of the
program. This ID is usually established by the USER parameter of your JCL JOB
card. You can modify qualification in one of three ways:

■ SQLID keyword on the CA-Easytrieve PARM statement

■ SQL SET CURRENT SQLID command

■ OWNER or QUALIFIER parameter on the DB2 for OS/390 and z/OS BIND
statement.

Use of the SQLID and its affect on table qualification depends on whether
automatic or controlled processing is performed and if STATIC or DYNAMIC
SQL is used.

To eliminate the authorization problems encountered with the use of SQLID, use
SQLSYNTAX NONE with BIND STATIC-ONLY. This enables the use of
unqualified table names and bypasses the dynamic prepare of SQL statements.
Unqualified table names can then be qualified by the BIND process.

Qualification with Automatic Processing

DYNAMIC SQL

Use the SQLID on the PARM statement to set the table qualification. SQLID sets
the qualification at compile time when table validation is performed. Also, it
executes a SET CURRENT SQLID at runtime.

The primary authorization ID must have the proper DB2 for OS/390 and z/OS
authority to issue the SET CURRENT SQLID command. This authority is
established through the implementation of an external security system.

In the following example, the use of SQLID sets the current SQLID to ‘SYSIBM'
during compilation, thus DB2 for OS/390 and z/OS verifies that the table called
‘SYSIBM.SYSPLAN' exists.

A SET CURRENT SQLID command automatically executes at runtime to
establish the qualification of SYSIBM for table SYSPLAN.
PARM SQLID('SYSIBM')
DEFINE WKNAME W 18 A
DEFINE WKCREATOR W 8 A
JOB INPUT SQL
 SELECT NAME, CREATOR FROM SYSPLAN ORDER BY NAME +
 INTO :WKNAME, :WKCREATOR

Qualifying DB2 for OS/390 and z/OS Tables

2–8 SQL Interface Option Guide

STATIC SQL

To modify for static execution, you change the PARM statement as follows:
PARM PLAN (TESTPLAN TESTPGM) LINK (EZTPGM R) +
 BIND STATIC-ONLY SQLID('SYSIBM')

The SQLID acts as it does for dynamic processing during the compilation of the
program. It executes a SET CURRENT SQLID = ‘SYSIBM'.

Since we are using automatic processing, the SET CURRENT SQLID command is
generated for runtime execution. However, since we are running static SQL, the
SET CURRENT SQLID has no affect on the qualification of tables. The OWNER
and QUALIFIER parameters of the BIND process establish the qualification of
unqualified tables. Refer to your IBM DB2 Reference Manual for more information
on the SET and BIND commands.

For both STATIC and DYNAMIC processing, the primary authorization ID of the
compile or runtime process must have the authority to execute the SET
CURRENT SQLID command. Invalid authorization results in an SQLCODE of
-553.

Qualification with Controlled Processing

DYNAMIC SQL

Consider the partial program in the following example. The SQLID on the PARM
statement generates a SET CURRENT SQLID = ‘SYSIBM' during the compilation
process. Thus, the table ‘SYSIBM.SYSPLAN' is validated.

During the execution phase, the SET CURRENT SQLID = ‘SYSIBM' is the first
SQL statement executed, so the DECLARE CURSOR and the FETCH is for the
table ‘SYSIBM.SYSPLAN'.

Qualifying DB2 for OS/390 and z/OS Tables

Program Environment 2–9

If you did not code the SET CURRENT SQLID command in your program, the
DECLARE CURSOR is executed for the table userid.SYSPLAN and a -514
SQLCODE occurs, since this table does not exist.
PARM SQLID('SYSIBM')
DEFINE WKNAME W 18 A
DEFINE WKCREATOR W 8 A
SQL DECLARE C1 CURSOR FOR +
 SELECT NAME, CREATOR +
 FROM SYSPLAN +
 ORDER BY NAME
JOB INPUT NULL
SQL SET CURRENT SQLID='SYSIBM'
 SQL OPEN C1
 PERFORM CHECK-SQL-CODE
 DO WHILE SQLCODE EQ 0
 SQL FETCH C1 INTO :WKNAME,:WKCREATOR
 PERFORM CHECK-SQL-CODE
 IF SQLCODE = 0
 PRINT REPORT1
 END-IF
 END-DO
 SQL CLOSE C1
 PERFORM CHECK-SQL-CODE
STOP

STATIC SQL

To modify for Static SQL processing, you change the PARM statement to look
like:
PARM PLAN (TESTPLAN TESTPGM) LINK (EZTPGM R) +
 BIND STATIC-ONLY SQLID('SYSIBM')

You also remove the SET CURRENT SQLID = ‘SYSIBM' statement. The SET
CURRENT command is a dynamic only command and thus has no affect on a
STATIC program.

With these modifications, the SQLID on the PARM statement still generates the
SET CURRENT SQLID command during compilation and then validates the
table SYSIBM.SYSPLAN.

To qualify the tables at execution, however, you must use the appropriate
parameters, OWNER and QUALIFIER, on the BIND statement. A sample BIND
statement is shown below. Refer to your IBM DB2 Reference Manual for
information on the DB2 for OS/390 and z/OS Bind statement.
BIND PLAN (TESTPLAN) MEMBER (TESTDBRM) VALIDATE (RUN) -
 ACT(REPLACE) ISOLATION (CS) OWNER(TESTUSER) QUALIFIER(SYSIBM)

SQL Error Handling

2–10 SQL Interface Option Guide

SQL Error Handling
At CA-Easytrieve Plus compilation time, the SQL statements in your program
undergo detail syntax checking by the underlying database management system
unless SQLSYNTAX=NONE is coded. Detail syntax checking means that the
SQL statement is processed by an SQL PREPARE statement that the SQL
interface manages. If the database detects an error, the SQL interface returns
error information with an appropriate error message.

At runtime, CA-Easytrieve Plus checks the SQLCODE in the SQLCA for you and
issues an appropriate error message if an error was detected during automatic
processing. It is the user's responsibility to check the SQLCODE after each SQL
statement to determine its success or failure when using Native SQL. The user
can display the various SQLCA fields and obtain the information to determine
the cause of any SQL error.

SQL Error Message Format

The format of the message containing the SQLCA error information returned to
the program, varies with the underlying database management system. The
format for each SQL database is shown below.

DB2 for OS/390 and z/OS, DB2 for VSE, and ORACLE
SQLCODE FROM SQLCA IS sqlcode

CA-Datacom
SQL ERROR, SQLCODE IS sqlcode, DBC=(sqldbcex,sqldbcin),
DSF=(sqldsfcd), PGM=(sqlerrp), QMCD=(q-command)

CA-IDMS
SQL ERROR, SQLCODE IS sqlcode, SQLCER is sqlcer.

SQL Error Handling

Program Environment 2–11

SQL Error Message Text

For each SQL error condition reported in the above format, the message
associated with the SQLCODE is also returned. The actual message text is
obtained from the following:

DB2 for OS/390 and z/OS

The message returned is obtained from the DB2 for OS/390 and z/OS module
DSNTIAR.

DB2 for VSE

The message is obtained from the CA-Pan/SQL module DQSMMTB. This
module extracts messages from the DB2 for VSE help tables as part of the
CA-Pan/SQL installation process.

ORACLE

The message is obtained from an internal ORACLE facility.

CA-Datacom

The message is obtained from the SQLERRM field of the SQLCA.

CA-IDMS

The message is obtained from the SQLCERM field of the SQLCA. For SQL syntax
errors, field SQLCER contains the displacement into the SQL statement where
the error was found.

Library Section Definition 3–1

Chapter

3 Library Section Definition

Before SQL data can be accessed, you must define the fields to hold the columns
to retrieve. These fields are known as host variables.

If you are using native SQL commands or using automatic retrieval without a
file, you usually define the fields as working storage fields. Alternatively, you
can define the fields in an active output file. This is an effective method to select
SQL data into a sequential file for extraction purposes. You must specify which
columns to retrieve and which host variables are to receive the data.

When using a CA-Easytrieve Plus file, however, fields defined in the file
correspond to the selected columns of the SQL table. The table columns are
retrieved into the file fields.

SQL Catalog INCLUDE Facility
You can use the SQL catalog INCLUDE facility to automatically generate
CA-Easytrieve Plus field definitions directly from the SQL catalog. This
eliminates the need to code host variable definitions in the library section of your
program.

The SQL INCLUDE statement names the SQL table or view from which column
names and data types are obtained, and defines the location at which the field
definitions are generated. The SQL INCLUDE statement must precede any other
SQL or SELECT statements and must be coded in the library section of your
CA-Easytrieve Plus program.

Note: ORACLE does not provide a catalog INCLUDE facility.

SQL INCLUDE Statement

3–2 SQL Interface Option Guide

SQL INCLUDE Statement
The CA-Easytrieve SQL INCLUDE statement indicates that SQL table
information generates CA-Easytrieve field definitions. It names the table and
gives the location where the field definitions are generated.

Note: The SQL INCLUDE statement cannot be used with batch to automatically
generate definitions with UPDATE.

Syntax
SQL INCLUDE +

 [(column ...)] +

[{starting-position}]
[{* [+offset] }]
[LOCATION { }] +
[{W }]
[{S }]

[HEADING] +

[UPDATE] +

[NULLABLE] +

FROM [owner.] table

Parameters
[(column ...)]

Specify a list of one or more column names for which field definitions are
generated. The column names must be enclosed in parentheses. If no column
names are specified, all columns from the table are used.
[{starting-position}]
[{* [+offset] }]
[LOCATION { }]
[{W }]
[{S }]

Use this optional parameter to specify the location at which the field
definitions are generated.

Starting-position specifies the starting position relative to position one of the
record or file.

The * (asterisk) indicates that the field begins in the next available starting
position (highest position assigned so far, plus 1). The optional +offset is an
offset you want added to the * value. There must be at least one blank
between the * and the optional +offset.

SQL INCLUDE Statement

Library Section Definition 3–3

Coding W or S establishes a working storage field. W fields are spooled to
report (work) files, S fields are not. W is the default location if the
LOCATION parameter is not coded.

[HEADING]

Optionally, code HEADING to copy LABEL from the DBMS system catalog
column entry into a HEADING parameter on the generated DEFINE
statement for the column.

[UPDATE]

Code UPDATE to designate a modifiable column.

When a CA-Easytrieve SQL file does not contain the UPDATE parameter,
only the specific columns defined with UPDATE can be modified with an
UPDATE statement. If UPDATE is coded on the FILE statement, you can
modify all columns in the file, provided you have the proper authorization.

Note: You can only use UPDATE when the field definitions are generated
for a CA-Easytrieve file.

[NULLABLE]

Optionally, code NULLABLE to define default indicator fields for columns
that contain NULL. The indicator field is defined as a 2 B 0 field preceding
the field being defined. CA-Easytrieve automatically uses the default null
indicator whenever the associated column is referenced. You can override
the use of the default null indicator by explicitly coding and referencing
another indicator variable.

The indicator variable precedes the data portion of the field in storage. This
field cannot be directly referenced. To check this indicator variable, you must
use the IF NULL statement.

FROM [owner.] table

FROM identifies the table definition to define to CA-Easytrieve. Owner is the
optional 1 to 18-character alphanumeric qualifier, and table is the 1 to
32-character alphanumeric name. You must use the period as the
qualification separator for owner-qualified tables.

Note: If the owner is not specified, the current authorization ID is used.

Notes

The generated CA-Easytrieve field names are the same as the SQL column
names. If a name matches a reserved word, the field definition is allowed, but all
references to it must be qualified using any applicable qualification.

SQL INCLUDE Statement

3–4 SQL Interface Option Guide

Mask information is not retrieved from the DBMS system catalog.

Group qualification structures of owner.table are defined before the first
INCLUDEd definition. The fields are defined under the table entity, which is, in
turn, under the owner-level entity. This ensures that multiple tables with
duplicate column names do not produce duplicate field names.

Fields with SQL data types that do not have equivalent CA-Easytrieve data types
are defined as shown in the following table. You cannot use fields of DATE,
TIME, TIMESTAMP, and BINARY in arithmetic operations. Fields of FLOAT,
DOUBLEPRECISION, REAL, and LONGINTEGER are defined as packed
decimal fields. Non-zero FILE-STATUS and SQLCODE values are returned if the
data is truncated.

SQL Data Type

CA-Easytrieve
Data Type

Length

Decimals

DATE Alphanumeric 10

TIME Alphanumeric 8

TIMESTAMP Alphanumeric 26

BINARY Alphanumeric Length of SQL
field

FLOAT Packed Numeric 10 3

DOUBLEPRECISION Packed Numeric 10 3

REAL Packed Numeric 10 3

LONGINTEGER Packed Numeric 10 0

The DBMS system catalog must be referenced each time the program is compiled
or interpreted. Therefore, to reduce catalog contention and to improve
performance, you should always create link-edited programs.

Field Reference

One of the advantages of using the SQL INCLUDE interface is the ability to
reference host-variable (CA-Easytrieve fields) using the group level TABLE
definition.

When specifying the INTO clause on a native SQL FETCH or non-file SQL
SELECT statement or the VALUES clause of the native SQL INSERT statement,
you can substitute the host variable TABLE definition in place of coding all
host-variables in the table.

SQL INCLUDE Statement

Library Section Definition 3–5

If you require access to an indicator variable other than its use for NULL
checking, you must define your own variable and reference it with its
host-variable. For some DBMSs, the indicator variable is examined to detect
truncation.

If NULLABLE is not coded on the INCLUDE statement, an indicator variable can
be passed along with the host variable for NULLABLE columns. When the
host-variable is a CA-Easytrieve group level definition of a table name, specify
an array of type 2 B 0 immediately following the host-table-name-variable. The
number of array elements should match the number of fields in the
CA-Easytrieve table name definition. Array elements are matched one-to-one
with the fields defined in the table name.

Qualifying SQL Column Names

The following example shows how to qualify SQL fields and how to use the
keyword NULLABLE.

Table PANSQL.PERSNL3 is defined exactly the same as table PANSQL.PERSNL.
To reference a column of table PANSQL.PERSNL, you must qualify it with the
table name PERSNL followed by a colon (:).

When you code NULLABLE on an SQL INCLUDE statement, CA-Easytrieve
Plus generates the two-byte binary field in front of the column field in the file or
record layout. When you code NULLABLE, you can then test the field for being
null rather than testing a null indicator.
PARM DEBUG(PMAP DMAP) ABEXIT NO
**
*** TABLE PANSQL.PERSNL CONTAINS NULLABLE COLUMNS
**
 FILE SQLFILE SQL
 SQL INCLUDE LOCATION W NULLABLE FROM PANSQL.PERSNL
**
*** TABLE PANSQL.PERSNL3 IS IDENTICAL TO PANSQL.PERSNL
*** AND IS INCLUDED FOR THE PURPOSE OF DEFINING SAME NAMED FIELDS
**
 SQL INCLUDE LOCATION W FROM PANSQL.PERSNL3
 JOB INPUT SQLFILE
 SELECT * FROM PANSQL.PERSNL +
 INTO :PANSQL.PERSNL
 IF PERSNL:EMP_PAY_NET NULL
 PERSNL:EMP_PAY_NET = 0
 END-IF
 IF PERSNL:EMP_PAY_GROSS NULL
 PERSNL:EMP_PAY_GROSS = 0
 END-IF
 IF SQLCODE NE 0 AND SQLCODE NE +100
 DISPLAY ‘SQLCODE = ‘ SQLCODE
 STOP EXECUTE
 END-IF
PRINT RPT
REPORT RPT
SEQUENCE PERSNL:EMP_REGIONS
LINE PERSNL:EMP_SSN PERSNL:EMP_NBR PERSNL:EMP_PHONE_NBR

Processing NULLable Fields

3–6 SQL Interface Option Guide

Processing NULLable Fields
CA-Easytrieve Plus supports the SQL concept of a null data value.

Null is a value that denotes the absence of a known value for a field. Specify the
keyword NULLABLE on the SQL INCLUDE statement to generate the null
indicator variables. The rest of the processing is done for you when processing
the SQL table as a file.

When a field is defined as nullable, you can use special processing statements:

■ You can use IF NULL to determine if the field contains a null value.

■ You can use MOVE NULL to set a field's value to null.

Manual NULL Processing

When you use native SQL statements or automatic retrieval without a file, you
define null values differently.

You define an indicator variable as a two-byte quantitative binary field (2 B 0).
This indicator variable is then used in the INTO clause of the native or automatic
SELECT statement. SQL returns a negative value to the indicator variable when
the field's value is null. See the native SQL examples in the “Examples” chapter
for the use of manual indicator values.

SQL Data Types

Library Section Definition 3–7

SQL Data Types
The following table illustrates SQL data types and corresponding CA-Easytrieve
Plus field definitions. SQL provides some data conversion in SQL assignments
and comparisons. Refer to your SQL guides for more information on SQL data
conversions.

SQL

CA-Easytrieve
Plus

DB2

CA-Datacom/ DB
SQL

ORACLE

CA-IDMS SQL

INTEGER 4 B 0

 4 I 0

Y Y Y Y

SMALL
INTEGER

 2 B 0

 2 I 0

Y Y Y Y

DECIMAL
(x,y)

 x P y Y Y Y Y

UNSIGNED
DECIMAL

(x,y)

 x P y N N N Y

CHARACTER
(x)

 x A Y Y Y Y

VARCHAR (x) x A VARYING (x
<= 254)

Y Y (8.1) Y Y

LONG
VARCHAR (x)

x A VARYING (x >
254)

Y Y (8.1) Y Y

NUMERIC
(x,y)

 x N y N Y Y Y

UNSIGNED
NUMERIC

(x,y)

 x N y N N N Y

FLOAT 10 P 3 Y Y Y Y

REAL 10 P 3 Y Y N Y

DOUBLE
PRECISION

10 P 3 Y Y N Y

GRAPHIC (x) x M

 x K

Y N N Y

SQL Data Types

3–8 SQL Interface Option Guide

SQL

CA-Easytrieve
Plus

DB2

CA-Datacom/ DB
SQL

ORACLE

CA-IDMS SQL

VARGRAPHI
C (x)

x M VARYING x K
VARYING (x <=

254)

Y N N Y

LONG
VARGRAPHI

C (x)

x M VARYING x K
VARYING (x > 254)

Y N N Y

DATE 10 A Y Y N Y

DATE
(ORACLE)

12 A N N Y N

RAW x A N N Y N

LONGRAW x A VARYING N N Y N

TIME 8 A Y Y N Y

TIMESTAMP 26 A Y Y N Y

LONG
INTEGER

10 P 0 N N N Y

BINARY x A y N N N Y

none x U y - - - -

Decimal Data Types

For SQL DECIMAL data types, the scale is the same as the decimal places of a
CA-Easytrieve Plus field. SQL precision refers to the total number of digits that
can occur in the packed field.

Length refers to the number of bytes occupied by the packed field.

A field that is 5 P 2 is the equivalent of an SQL DECIMAL data type of precision
= 9 and scale = 2. Depending on your SQL release, SQL might not support
CA-Easytrieve Plus packed fields with lengths > 8.

To ensure even precision, you should specify the keyword EVEN on the DEFINE
for user-coded host variables.

System-Defined File Fields

Library Section Definition 3–9

SQL Syntax Checking

When an SQL statement is passed to SQL for syntax checking, host variables are
converted to question marks (?). It is possible that when an SQL error is detected,
the question mark is identified as the field in error. In this case, you are
responsible for looking up the error message and identifying which host variable
is in error.

Because host variables are replaced with question marks, their use in arithmetic
expressions can result in compile errors. For DB2 for OS/390 and z/OS and DB2
for VSE, an SQLCODE of -418 can occur.

System-Defined File Fields
When using a CA-Easytrieve Plus file to process an SQL database, two
system-defined fields are used:

■ RECORD-COUNT

■ RECORD-LENGTH.

RECORD-COUNT

RECORD-COUNT contains the number of rows returned to the CA-Easytrieve
Plus program. This is the number of rows fetched either by automatic or
controlled processing.

RECORD-LENGTH

RECORD-LENGTH is the length of the SQL file. The length is the sum of the
maximum lengths of all fields in the file.

SQL Communications Area Fields
All of the SQL Communication Area fields (SQLCA) are automatically created in
S (static) working storage when any of the following occurs:

■ The first SQL-managed FILE IS ENCOUNTERED

■ The first SQL INCLUDE statement is encountered

■ The first native SQL statement is found

■ The first JOB INPUT SQL statement is found.

SQL Communications Area Fields

3–10 SQL Interface Option Guide

The fields, generated for SQLCA for the supported SQL database management
systems, are shown below.
DEFINE SQLCA S 136 A
DEFINE SQLCAID SQLCA 8 A
DEFINE SQLCABC SQLCA +8 4 B O
DEFINE SQLCODE SQLCA +12 4 B O
DEFINE SQLERRM SQLCA +16 72 A
DEFINE SQLERRML SQLCA +16 2 B O
DEFINE SQLERRMC SQLCA +18 70 A
DEFINE SQLERRP SQLCA +88 8 A
DEFINE SQLERRD SQLCA +96 4 B O OCCURS 6
DEFINE SQLWARN SQLCA +120 8 A
DEFINE SQLWARN0 SQLCA +120 1 A
DEFINE SQLWARN1 SQLCA +121 1 A
DEFINE SQLWARN2 SQLCA +122 1 A
DEFINE SQLWARN3 SQLCA +123 1 A
DEFINE SQLWARN4 SQLCA +124 1 A
DEFINE SQLWARN5 SQLCA +125 1 A
DEFINE SQLWARN6 SQLCA +126 1 A
DEFINE SQLWARN7 SQLCA +127 1 A
DEFINE SQLEXT SQLCA +128 8 A
DEFINE SQLWARN8 SQLCA +128 1 A
DEFINE SQLWARN9 SQLCA +129 1 A
DEFINE SQLWARNA SQLCA +130 1 A
DEFINE SQLSTATE SQLCA +131 5 A

SQLCA S 196 A
SQLCA-EYE-CATCH SQLCA 8 A
SQLCAID SQLCA 8 A
SQLCA-LEN SQLCA +8 4 B O
SQLCABC SQLCA +8 4 B O
SQLCA-DB-VRS SQLCA +12 2 A
SQLCA-DB-RLS SQLCA +14 2 A
SQLCA-LUWID SQLCA +16 8 A
SQLCODE SQLCA +24 4 B O
SQLCA-ERROR-INFO SQLCA +28 82 A
SQLCA-ERR-LEN SQLCA +28 2 B O
SQLCA-ERR-MSG SQLCA +30 80 A
SQLERRM SQLCA +28 72 A
SQLERRML SQLCA +28 2 B O
SQLERRMC SQLCA +30 70 A
SQLCA-ERROR-PGM SQLCA +110 8 A
SQLERRP SQLCA +110 8 A
SQLCA-FILLER-1 SQLCA +118 2 A
SQLCA-ERROR-DATA SQLCA +120 24 A
SQLCA-DSFCODE SQLCA +120 4 A
SQLCA-INFCODE SQLCA +124 4 B O
SQLCA-DBCODE SQLCA +128 4 A
SQLCA-DBCODE-EXT SQLCA +128 2 A
SQLCA-DBCODE-INT SQLCA +130 2 B O
SQLCA-MISC-CODE1 SQLCA +132 4 A
SQLCA-MISC-CODE2 SQLCA +136 4 B O
SQLCA-MISC-CODE3 SQLCA +140 4 A
SQLCA-WRN-AREA SQLCA +144 8 A
SQLCA-WARNING SQLCA +144 1 A OCCURS 8
SQLWARN SQLCA +144 8 A
SQLWARN0 SQLCA +144 1 A
SQLWARN1 SQLCA +145 1 A
SQLWARN2 SQLCA +146 1 A
SQLWARN3 SQLCA +147 1 A

SQL Communications Area Fields

Library Section Definition 3–11

SQLWARN4 SQLCA +148 1 A
SQLWARN5 SQLCA +149 1 A
SQLWARN6 SQLCA +150 1 A
SQLWARN7 SQLCA +151 1 A
SQLCA-PGM-NAME SQLCA +152 8 A
SQLCA-AUTHID SQLCA +160 18 A
SQLCA-PLAN-NAME SQLCA +178 18 A

SQLCA S 344 A
SQLCAID SQLCA 8 A
SQLCODE SQLCA +8 4 B O
SQLCSID SQLCA +12 4 B O OCCURS 2
SQLCERC SQLCA +20 4 B O
SQLCNRP SQLCA +28 4 B O
SQLCSER SQLCA +36 4 B O
SQLCLNO SQLCA +44 4 B O
SQLCMCT SQLCA +48 4 B O
SQLCOPTS SQLCA +52 4 B O
SQLCFJB SQLCA +56 4 B O
SQLCPCID SQLCA +60 4 B O
SQLCLCID SQLCA +64 4 B O
SQLCERL SQLCA +68 2 B O
SQLCERM SQLCA +72 256 A
SQLSTATE SQLCA +328 5 A

DEFINE SQLCA S 136 A
DEFINE SQLCAID SQLCA 8 A
DEFINE SQLCABC SQLCA +8 4 B 0
DEFINE SQLCODE SQLCA +12 4 B 0
DEFINE SQLERRM SQLCA +16 72 A
DEFINE SQLERRML SQLCA +16 2 B 0
DEFINE SQLERRMC SQLCA +18 70 A
DEFINE SQLERRP SQLCA +88 8 A
DEFINE SQLERRD SQLCA +96 4 B 0 OCCURS 6
DEFINE SQLWARN SQLCA +120 8 A
DEFINE SQLWARN0 SQLCA +120 1 A
DEFINE SQLWARN1 SQLCA +121 1 A
DEFINE SQLWARN2 SQLCA +122 1 A
DEFINE SQLWARN3 SQLCA +123 1 A
DEFINE SQLWARN4 SQLCA +124 1 A
DEFINE SQLWARN5 SQLCA +125 1 A
DEFINE SQLWARN6 SQLCA +126 1 A
DEFINE SQLWARN7 SQLCA +127 1 A
DEFINE SQLWARN8 SQLCA +128 1 A
DEFINE SQLWARN9 SQLCA +129 1 A
DEFINE SQLWARNA SQLCA +130 1 A
DEFINE SQLEXT SQLCA +131 5 A

Sample Database

3–12 SQL Interface Option Guide

Sample Database
The following example illustrates the two tables used for all the examples in this
chapter:

 TABLE: PERSONNEL

 COLUMNS: EMPNAME WORKDEPT EMPPHONE SALARY

 DATA: NORIDGE DEBBIE 901 5001 32400
 OSMON SAMUEL 901 5004 62800
 MILLER JOAN 950 6034 31360
 EPERT LINDA 950 null 31040
 STRIDE ANN 901 null 38640
 ROGERS PAT 921 2231 32900

 EMPNAME - CHAR(20) (NOT NULL)
 WORKDEPT - DECIMAL(3,0) (NOT NULL)
 EMPPHONE - DECIMAL(5,0) (NULL)
 SALARY - DECIMAL(8,2) (NOT NULL)

 TABLE: DEPARTMENTS

 COLUMNS: DEPTNAME DEPTNUMBER

 DATA: SHIPPING 901
 HUMAN RESOURCES 921
 ACCOUNTING 950
 DATA PROCESSING 951

 DEPTNAME - VARCHAR(20) (NOT NULL)
 DEPTNUMBER - DECIMAL(3,0) (NOT NULL)

 WORKDEPT in the PERSONNEL table corresponds with
 the DEPTNUMBER in the DEPARTMENTS table.

Working Storage Definitions

The following example shows working storage field definitions for the sample
tables in the previous example:

 DEFINE EMPNAME W 20 A
 DEFINE WORKDEPT W 2 P O
 DEFINE EMPPHONE W 3 P O
 DEFINE DEPTNAME W 22 A VARYING
 DEFINE DEPTNUMBER W 2 P O
 DEFINE NULLPHONE W 2 B O .* NULL INDICATOR
 DEFINE SYS-USERID W 8 A VALUE('SQLDBA') .* SQL/DS USERID
 DEFINE PASSWORD W 8 A VALUE('SQLDBAPW') .* SQL/DS PASSWORD

Automatic Processing 4–1

Chapter

4 Automatic Processing

This chapter describes automatic table processing. With automatic processing,
you can retrieve selected data (or all data) from every row in a table or view.

Files Associated with SQL Cursor

SQL cursor management can be automated when you associate an SQL cursor
with a CA-Easytrieve Plus file. The SQL file can then be accessed with the JOB
INPUT statement. With each iteration of the JOB statement or activity, another
row from the table is automatically retrieved into the file's data area. Even if you
only have a basic knowledge of SQL, you can report on data contained in an SQL
database.

Automatic Retrieval Without a File

Automatic retrieval does not require that you define a CA-Easytrieve Plus file. In
this read-only method, SQL must be coded on the JOB statement in place of a file
name. You must code a SELECT statement directly after the JOB statement to
specify the columns to retrieve and the host variables to receive the data. Each
time the JOB activity is iterated, another row of SQL data is retrieved. This is a
simple way to retrieve SQL data into working storage or into an extract file for
subsequent output.

Specifying Automatic Input
Automatic input is specified using the JOB statement and either the SELECT
statement with the select-clause, the FILE statement with the SQL keyword plus
select-clause, or a combination of these statements. The possible approaches are
as follows:

1. JOB INPUT SQL
SELECT select-clause

 The JOB statement uses the SQL keyword to indicate that input is coming
from an SQL table. The SELECT statement specifies the select-clause, which
identifies the table and provides other parameters for automatic input.

FILE Statement

4–2 SQL Interface Option Guide

2. FILE filename SQL (select-clause)
JOB INPUT filename

 The FILE statement uses the SQL keyword to indicate that filename is an
SQL file and uses the select-clause to specify parameters for automatic input.
The JOB statement names the SQL file.

3. FILE filename SQL
JOB INPUT filename
SELECT select-clause

 The FILE statement uses the SQL keyword to indicate that filename is an
SQL file. The JOB statement names the SQL file. The SELECT statement
identifies the information to retrieve. The SELECT statement is required
since no select-clause was coded on the FILE statement.

4. FILE filename SQL (select-clause)
JOB INPUT filename
SELECT select-clause

 This is the same as approach 2 above, except that the select-clause on the
SELECT statement overrides the select-clause on the FILE statement.

Note: If the select-clause is not coded on the FILE statement, the SELECT
statement must immediately follow the JOB statement.

FILE Statement
The FILE statement can identify a file as an SQL file and specify the select-clause.
When used in this way, the FILE statement is limited to the following syntax.
FILE filename SQL [(select-clause)] +
 [DEFER] +

 [{IBM }]
 [{IBMKOREA}]
 [{JEF }]
 [{JEF4040 }]
 [DBCSCODE {JIPSE }]
 [{JIS }]
 [{KEIS }]
 [{MELCOM }]
 [{SHOWA }]
 [{TORAY }]

filename

This is the SQL filename. This filename can subsequently be referenced on the
JOB statement or on a GET statement. Filename can be used as a synchronized
file.

JOB Statement

Automatic Processing 4–3

SQL [(select-clause)]

SQL identifies filename as an SQL file. Select-clause is specified in the same
manner as the select-clause used on the SELECT statement (see Select-Clause
Syntax and Select-Clause Syntax in the description of the SELECT statement).

■ If select-clause is coded, it must be in parentheses.

■ If select-clause is not coded, a SELECT statement containing the select-clause
must be coded following the JOB statement.

■ If select-clause is not coded, you cannot use filename on a GET statement.

[DEFER]

DEFER opens an SQL cursor at the execution of the first GET statement. This
means that the cursor is opened after the user-specified start procedure. If
DEFER is not coded, the cursor is opened before the user-specified start
procedure.

[DBCSCODE]

DBCSCODE defines the code system that is associated with all CA-Easytrieve
Plus fields defined for this file.

■ If you do not code this option, the Processing code system is used. The DBCS
Options module identifies this code system. You can alter the code system by
using the DBCSCODE option of the PARM statement.

■ If your site does not support the DBCS option, then this option is invalid.

■ If the file being defined is associated with an extended reporting printer that
does not support DBCS data, then this keyword is invalid. Should the
extended reporting printer support DBCS data, then you can use the
DBCSCODE keyword to modify the DBCS code system of the printer.

Refer to the CA-Easytrieve Plus Getting Started for more information.

JOB Statement
The syntax of the JOB statement for SQL is as follows.
 {filename}
JOB INPUT {SQL } . . .
 { }

When an SQL filename is specified on a JOB statement, input is based on the
select-clause given on the FILE statement. If the keyword SQL is coded on the
JOB statement, input is based on the select-clause given on the SELECT
statement immediately following the JOB statement. Any nonzero SQLCODE
condition from the select-clause terminates execution.

SELECT Statement

4–4 SQL Interface Option Guide

Coding SQL or an SQL filename on the JOB statement opens an SQL cursor at the
start of the job activity. An SQL FETCH command or statement executes for each
execution of the JOB statement (including the first).

SELECT Statement
Code the SELECT statement immediately following the:

■ JOB INPUT SQL statement, in which case the SELECT statement is required.

■ JOB INPUT filename statement where:

– The select-clause was not coded on the FILE statement. In this case, the
SELECT statement is required.

– You want to override the select-clause that was given on the FILE
statement. In this case, the SELECT statement is optional.

The SELECT statement, or the select-clause on the FILE statement if coded,
identifies the rows and columns that are to be input to the JOB activity. You can
code only one SELECT statement in each JOB activity.

Select-Clause Syntax

The select-clause identifies the rows and columns that are input to the JOB
activity.
 [] {{ * }
 [DISTINCT] {{expression }
 SELECT [ALL] {{table-name.* } +
 [] {{correlation-name. *}

 [{expression }] }
 [, {table-name.* } ...] } +
 [{correlation-name.* }] }
 [{ }] }

 FROM table-name [correlation-name] +
 [,table-name [correlation-name] ...] +

 [WHERE search-condition] +

 []
 [GROUP BY column-name +] +
 [[, column-name ...]]
 []

 [HAVING search-condition] +

SELECT Statement

Automatic Processing 4–5

 []
 [[] {{ * }]
 [[DISTINCT] {{expression }]
 [UNION SELECT [ALL] {{table-name.* } +]
 [[] {{correlation-name.*}]
 []
 [[{expression }] }]
 [[, {table-name.* } ...] } +]
 [[{correlation-name.*}] }]
 [[{ }] }]
 []
 [FROM table-name [correlation-name] +]
 [[,table-name [correlation-name] ...] +] +
 []
 [[WHERE search-condition] +]
 []
 [[]]
 [[GROUP BY column-name +] +]
 [[[, column-name ...]]]
 [[]]
 []
 [[HAVING search-condition]]
 []

 [{ } []]
 [ORDER BY {column-name} [ASC] +]
 [{ integer } [DESC]]
 [{ } []]
 []
 [[{ } []]]
 [[, {column-name} [ASC]]]
 [[{integer } [DESC] ...]] +
 [[{ } []]]

 INTO :host-variable [, :host-variable...]

[]
[DISTINCT]
[ALL]
[]

DISTINCT eliminates duplicate rows. ALL specifies that duplicate rows are not
eliminated. ALL is the default.

{ * }
{expression }
{table-name.* }
{correlation-name.*}

These identify the columns to retrieve from the specified table.

FROM table-name [correlation-name]

Table-name specifies the table from which data is retrieved. Correlation-name
can define an alias for the table-name that immediately precedes the
correlation-name.

SELECT Statement

4–6 SQL Interface Option Guide

[WHERE search-condition]

Search-condition specifies conditions for the retrieval of data. The
search-condition is applied to the result of the FROM clause. Refer to your SQL
guides for a description of the search-condition.

[GROUP BY column-name]

GROUP BY groups data from the FROM and WHERE clauses. Column-name
cannot be a long string (more than 254 bytes in length).

[HAVING search-condition]

Search-condition also specifies the data provided to the user. HAVING can
compare the results of all the returned data with a specific value in the data
provided, such as the minimum or maximum value. Refer to your SQL guides
for a description of the search-condition.

[UNION...]

The UNION verb includes rows from another table.

[{ } []]
[ORDER BY {column-name} [ASC]]
[{integer } [DESC]]
[{ } []]

ORDER BY returns the rows of the result table in the order of the values of the
specified column-names. ASC returns the rows in ascending order and is the
default. DESC returns the rows in descending order. Integer references a column
by its position rather than by a column-name.

INTO :host-variable

The INTO clause identifies where the column values are placed. The INTO clause
must be the last clause coded in the select-clause.

Select-Clause Operation

If this execution is for an DB2 for VSE or ORACLE system, a CONNECT
statement is generated and executed. This means that the user does not need to
include an SQL CONNECT statement when using CA-Easytrieve Plus automatic
processing. The user ID and password values are those that were specified in the
USERID parameter of the PARM statement.

SELECT Statement

Automatic Processing 4–7

The SQLCODE field is checked following each execution of the select-clause.

■ If the SQLCODE is a value other than a zero (0) or a no more rows found
condition, an error message is issued based on the SQL error and execution
terminates.

■ A no more rows found condition causes the initiation of end of input
processing: the FINISH PROC (if any) executes, spooled reports are printed,
and the current JOB activity ends.

The select-clause on a FILE statement permits references to fields not yet defined,
but all references must be defined by the first JOB or SORT statement.

The SQL cursor that is automatically defined by a SELECT statement or a FILE
statement (with the SQL option) is closed following the JOB activity referencing
it.

For FILE statements with the SQL option:

■ When the select-clause encounters no more rows found condition, the SQL
file is marked EOF (end-of-file). In the case where the JOB statement
references the SQL file, execution of the JOB activity stops and the FINISH
procedure (if present) executes.

■ The system-defined field RECORD-COUNT contains the number of rows
returned.

■ The length of the SQL file is the sum of the maximum lengths of all the fields
in the file. The system-defined field RECORD-LENGTH contains this value.

■ Fields are defined to the SQL file using any available means.

■ The select-clause cannot reference a CA-Easytrieve Plus group level
definition of a table name as a host variable.

■ File statistics are produced at the end of execution of each JOB activity.

Generated Code

The pseudo-code, generated for automatic SQL processing, is:
 * IF SQL/DS, ORACLE, OR CA-IDMS
 SQL CONNECT . . .
 * END-IF
 SQL DECLARE cursor CURSOR FOR select clause
 SQL OPEN cursor
 DO WHILE SQLCODE NE 100
 SQL FETCH cursor INTO :host-variable +
 [, :host-variable...]
 process EZT+ code
 END-DO
 SQL CLOSE cursor

Controlled Processing 5–1

Chapter

5 Controlled Processing

Controlled SQL Processing can be performed using the Native SQL commands
or the GET statement if SQL files are used.

GET Statement
The syntax for the GET statement for SQL is as follows.

Syntax
GET filename [STATUS]

When an SQL filename is specified on a GET statement, an SQL FETCH
statement is issued, and the next available row is returned from the SQL cursor.
The STATUS keyword returns the SQLCODE in the system-defined field
FILE-STATUS (defined as 4 B 0). If STATUS is not coded, FILE-STATUS contains
zeros. To use an SQL filename on GET, code the select-clause on the FILE
statement.

An SQL filename on the GET statement opens an SQL cursor at the start of the
job activity, unless DEFER is coded on the FILE statement. If DEFER is coded, an
SQL cursor opens at the execution of the first GET statement.

If the STATUS keyword is not coded on the GET statement for an SQL file, a
nonzero SQLCODE condition terminates execution.

Remember, for FILE statements with the SQL options:

■ When the select-clause encounters an SQL no more rows condition, the SQL
file is marked EOF.

■ The system-defined field RECORD-COUNT contains the number of rows
returned.

■ The length of the SQL file is the sum of the maximum lengths of all the fields
in the file. The system-defined field RECORD-LENGTH contains this value.

■ Fields are defined to the SQL file using any available means.

Native SQL

5–2 SQL Interface Option Guide

■ The select-clause cannot reference a CA-Easytrieve Plus group-level
definition of a table name as a host variable.

■ File statistics are produced at the end of each JOB activity execution.

Native SQL
This method of processing uses native SQL statements that are equivalent to
many of those used in COBOL. By using these native SQL statements, you
control the SQL cursor operation. All native SQL statements are prefixed with
the SQL keyword.

Syntax
SQL native-sql-statement

Usage Notes

See the specific database management system guide for information about syntax
for native database statements. Listed below are the SQL statements currently
supported by the SQL interface.

DB2 for OS/390 and z/OS SQL Statements:

■ ALLOCATE cursor-name *(for static-only processing)

■ ALTER

■ ASSOCIATE *(for static-only processing)

■ CALL procedure-name *(for static-only processing)

■ CLOSE cursor-name

■ COMMENT ON

■ COMMIT {work}

■ CONNECT

■ CREATE

■ DECLARE cursor-name {with hold}

■ DELETE {where current of cursor-name}

■ DROP

■ EXPLAIN

■ FETCH cursor-name

■ GRANT

Native SQL

Controlled Processing 5–3

■ INSERT

■ LABEL

■ LOCK

■ OPEN cursor-name

■ RELEASE

■ REVOKE

■ ROLLBACK {work}

■ SELECT INTO *(for static-only processing)

■ SET CONNECTION

■ SET CURRENT DEGREE

■ SET CURRENT PACKAGESET

■ SET CURRENT SQLID

■ SET host-variable

■ UPDATE {where current of cursor-name}.

* Refer to SQLSYNTAX in the PARM statement.

DB2 for VSE SQL Statements:

■ ACQUIRE

■ ALTER

■ CLOSE cursor-name

■ COMMENT

■ COMMIT {work}

■ CONNECT :userid

■ CONNECT TO :database

■ CREATE

■ DECLARE CURSOR-NAME

■ DELETE {where current of cursor-name}

■ DROP

■ EXPLAIN

■ FETCH cursor-name

■ GRANT

■ INSERT

■ LABEL

Native SQL

5–4 SQL Interface Option Guide

■ LOCK

■ OPEN cursor-name

■ PUT

■ REVOKE

■ ROLLBACK {work}

■ UPDATE {where current of cursor-name}.

CA-Datacom/DB SQL Statements:

■ ALTER

■ CLOSE cursor-name

■ COMMENT

■ COMMIT {work}

■ CREATE

■ DECLARE cursor-name

■ DELETE {where current of cursor-name}

■ DROP

■ FETCH cursor-name

■ GRANT

■ INSERT

■ LOCK

■ OPEN cursor-name

■ REVOKE

■ ROLLBACK {work}

■ SELECT INTO

■ UPDATE {where current of cursor-name}.

CA-IDMS SQL Statements:

■ ALTER

■ CLOSE cursor-name

■ COMMIT {work} {continue} {release}

■ CONNECT TO dictionary-name

■ CREATE

■ DECLARE cursor-name

■ DELETE where search-condition *

Native SQL

Controlled Processing 5–5

■ DROP

■ EXPLAIN

■ FETCH cursor-name

■ GRANT

■ INSERT

■ OPEN cursor-name

■ RELEASE

■ RESUME

■ REVOKE

■ ROLLBACK {work}

■ SUSPEND

■ UPDATE where search-condition *.

■ The DELETE and UPDATE can only execute using a search condition on the
where clause. The “where current of cursor-name” syntax is not supported
using dynamic SQL processing.

ORACLE Statements:

■ DECLARE

■ OPEN

■ FETCH

■ CLOSE

■ UPDATE

■ INSERT

■ DELETE

■ CONNECT (by parms or identified by password)

■ COMMIT

■ ROLLBACK

■ ALTER

■ COMMENT

■ CREATE

■ DROP

■ GRANT

■ LOCK

■ REVOKE

CALL Statement

5–6 SQL Interface Option Guide

■ AUDIT

■ NOAUDIT

■ RENAME

■ VALIDATE SET

Processing Requirements
■ The SQL DECLARE statement must be coded in the Library Definition

section of a CA-Easytrieve Plus program. All other SQL statements, except
SQL INCLUDE, must be coded in the Activity Definition section.

■ You should test the SQLCODE field in the SQLCA to determine if the
execution of each controlled processing statement is successful.

 If the SQLCODE field contains a zero (0), you should test the SQLWARN0
field to ensure that no warning conditions were issued during processing of
the SQL statement. Refer to the appropriate SQL reference guide to
determine acceptable values for SQLWARN0.

■ All SQL INCLUDE statements and SQL-managed file definitions must be
coded before any controlled SQL statements.

Operation

Coding native SQL statements requires an advanced knowledge of SQL
statements and of the database to process. Native SQL statements can be coded
in any JOB activity. You cannot code them in SORT or REPORT procedures.

CALL Statement
The syntax for the CALL statement as supported by DB2 for OS/390 and z/OS is
as follows.

CALL Syntax: Format 1
CALL procedure-name (parmlist)

where the procedure name is provided as a host variable

CALL, ASSOCIATE, and ALLOCATE

Controlled Processing 5–7

CALL Syntax: Format 2
CALL :procedure-name (parmlist)

where the procedure name is provided as a host variable

Format A is the only supported format fo the CALL Statement.

Format B is not supported. CA-Easytrieve Plus performs some syntax checking
of SQL statements, replacing host variable identifiers with a question mark. In
the case of Foramt B, it identifies the parameter list as a subscript of the variable
procedure name and flags this as an error.

CALL, ASSOCIATE, and ALLOCATE
To use the CALL, ASSOCIATE, and ALLOCATE statements, you must have a
BIND option of STATIC-ONLY. This requires the JCL shown for the EXTPDB2
procedure. (This JCL is shown in the EXTPDB2 Procedure section of the
"Executing Your SQL Program" chapter.

These statements undergo partial syntax checking by the PanSQL interface. They
undergo complete syntax checking when the static-command-program is
processed by the DB2 for OS/390 and z/OS preprocessor DSNHPC. The output
from the DB2 for OS/390 and z/OS preprocessor must be examined for any
possible SQL errors.

See the Static SQL Mode section in the "Executing Your SQL Program" chapter of
this guide for a detailed explanation of the steps executed to run the program
statically.

Executing Your SQL Program 6–1

Chapter

6 Executing Your SQL Program

This chapter describes how to use CA-Easytrieve Plus in different environments.

DB2 for OS/390 and z/OS Execution

Dynamic SQL Mode

The following example illustrates the JCL necessary to execute CA-Easytrieve
Plus with DB2 for OS/390 and z/OS, using the Dynamic SQL mode.

OS/390 and z/OS JCL
//jobname JOB accounting.info,USER=userid
//stepname EXEC PGM=EZTPA00
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=your.pansql.loadlib
// DD DISP=SHR,DSN=your.db2.sspgm.lib
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//SYSSNAP DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSIN DD *
 ... CA-Easytrieve Plus DB2 source statements ...
/*

Note: The value of sspgm names your IBM DB2 for OS/390 and z/OS load
library, which contains the programs DSNHLI2 and DSNALI.

Static SQL Mode

This topic describes the additional steps that must run to create the Static
application plan.

Note: The JCL procedure (EZTPDB2) for building the static application plan is
in the SAMPJCL library downloaded during installation.

PAN$SQL DD File

6–2 SQL Interface Option Guide

Sample Job Stream

The procedure for building the Static application plan follows these steps:

1. The Pan/SQL interface called by CA-Easytrieve Plus writes the SQL
statements, along with other control information, to a command program
generation file (ddname = GENDATA).

2. The GENDATA file is processed by Pan/SQL to generate a valid assembler
program for the IBM DB2 for OS/390 and z/OS preprocessor.

3. The DB2 for OS/390 and z/OS precompiler translates the command
program assembler source and creates a DBRM (database request module)
entry in the DBRMLIB.

4. The command program can then be assembled and link edited to produce
the static command program.

5. The DBRM can then be bound into an application plan or package. The
sample JCL creates a plan. You can modify this JCL to bind the DBRM into a
package. The final planname must match the planname specified for the
PLAN parameter.

PAN$SQL DD File
You can code a PAN$SQL DD statement to provide a plan name and DB2 for
OS/390 and z/OS subsystem to be used at the time of your execution. The
PAN$SQL DD file is processed only when executing statically and if the DB2 for
OS/390 and z/OS Call Attach Facility is used to establish a connection.

The PAN$SQL file can also be used to indicate that you want to execute under
the TSO Terminal Monitor Program in background mode. If TSO execution is
specified, then the plan name and subsystem ID parameters are ignored.

Valid parameters for the PAN$SQL file are the following:

■ PLAN—provide the name of the DB2 for OS/390 and z/OS plan to use for
execution

■ SSID—provide the name of the DB2 for OS/390 and z/OS subsystem to use
for the DB2 for OS/390 and z/OS Call Attach Facility for a connection..

■ TSO—indicates that you want to execute your CA-Easytrieve Plus program
under the TSO Terminal Monitor Program in background mode. You must
code the correct JCL.

 The following is sample JCL for the PAN$SQL statement:
 //PAN$SQL DD *
 PLAN=TESTPLAN,SSID=D510

PAN$SQL DD File

Executing Your SQL Program 6–3

The ability to specify a planname for execution enables you to compile and link
your CA-Easytrieve Plus DB2 for OS/390 and z/OS application program once.
The DBRM can then be bound into any DB2 for OS/390 and z/OS subsystem
with any planname.

Execution under TSO resolves the problem of called DB2 for OS/390 and z/OS
subroutines that previously had to be linked with DSNALI, the DB2 for OS/390
and z/OS Call Attach Facility module. This restriction required subroutines to be
linked one way for other applications.

If your CA-Easytrieve Plus program contains SQL statements and it also calls
COBOL (or other language) subroutines, you can now share those subroutines
with CA-Easytrieve Plus applications and other applications. You can link your
COBOL subroutines once with DSNELI and it can be used by all of your
applications..

Sample JCL for Execution Under TSO
//EXECEZT EXEC PGM=IKJEFT01,DYNAMBR=20
//STEPLIB DD DISP=SHR,DSN=your.ezt.target.library
// DD DISP=SHR,DSN=your.ezt.db2.application.library
// DD DISP=SHR,DSN=your.pansql.tso.load.library
// DD DISP=SHR,DSN=your.db2.sdsnload.library
//PAN$SQL DD *
 TSO <=== Indicate TSO execution
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//REPORT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSTSIN DD *
 DSN SYSTEM(D510)
 RUN PROGRAM(eztpgm) PLAN(testplan)
 END
/*

EZTPDB2 Procedure

6–4 SQL Interface Option Guide

EZTPDB2 Procedure
The EZTPDB2 procedure is installed as member DB2BINDP in your SAMPJCL
dataset. The EZTPDB2 procedure builds the static application program and plan.
//**
//*
//* PROC TO: 1) Compile the CA-Easytrieve Plus program
//* 2) Link the CA-Easytrieve Plus program
//* 3) Process the Pan/SQL DB2 static command program
//* 4) Preprocess the static command program by DB2
//* 5) Assemble the static command program
//* 6) Link the static command program
//* 7) Run TSO to BIND and GRANT authorization
//*
//**
//EZTPDB2 PROC DBRMLIB=, /*DBRMLIB */
// DB2LIB=, /*DB2 LOAD LIB */
// RUNLIB=, /*DB2 RUNLIB */
// EZTPLIB=, /*EZTP LOAD LIB */
// EZTPPGM=, /*EZTP LINKED PGM LIB */
// PSQLLIB=, /*PAN/SQL LOAD LIB */
// DBRMNME=, /*DBRMNAME */
// STCPGMN= /*STATIC.CMD.PROGRAM */
//*
//**
//*
//* STEP 1: Compile CA-Easytrieve Plus program
//*
//**
//EZTPLUS EXEC PGM=EZTPA00
//STEPLIB DD DISP=SHR,DSN=&EZTPLIB
// DD DISP=SHR,DSN=&PSQLLIB
// DD DISP=SHR,DSN=&DB2LIB
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DISP=(NEW,PASS),DSN=&&SYSLIN,
// UNIT=SYSDA,
// DCB=(BLKSIZE=3120,LRECL=80,RECFM=FB),
// SPACE=(3120,(100,50),RLSE)
//GENDATA DD DISP=(NEW,PASS),DSN=&&EZTPDB2,
// UNIT=SYSDA,
// DCB=(BLKSIZE=3120,LRECL=80,RECFM=FB),
// SPACE=(3120,(100,50),RLSE)
//EZTVFM DD UNIT=SYSDA,SPACE=(CYL,(1,5))
//**
//*
//* STEP 2: CA-Easytrieve Plus Link
//*
//**
//LKEDEZT EXEC PGM=IEWL,COND=(0,NE,EZTPLUS)
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DISP=(OLD,DELETE) DSN=&&SYSLIN
//SYSLMOD DD DISP=SHR,DSN=&EZTPPGM
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

EZTPDB2 Procedure

Executing Your SQL Program 6–5

//**
//*
//* STEP 3: Generate static command program statements
//*
//**
//GEN EXEC PGM=DQSCGEN,COND=(0,NE,EZTPLUS)
//STEPLIB DD DISP=SHR,DSN=&PSQLLIB
//GENDATA DD DISP=(OLD,DELETE),DSN=&&EZTPDB2
//CMDPGM1 DD DISP=(NEW,PASS),DSN=&&CPGM1,
// UNIT=SYSDA,
// DCB=(BLKSIZE=3120,LRECL=80,RECFM=FB),
// SPACE=(TRK,(1,1))
//CMDPGM2 DD DISP=(NEW,PASS),DSN=&&CPGM2,
// UNIT=SYSDA,
// DCB=(BLKSIZE=3120,LRECL=80,RECFM=FB),
// SPACE=(TRK,(2,1))
//CMDPGM3 DD DISP=(NEW,PASS),DSN=&&CPGM3,
// UNIT=SYSDA,
// DCB=(BLKSIZE=3120,LRECL=80,RECFM=FB),
// SPACE=(TRK,(2,1))
//CMDPGM4 DD DISP=(NEW,PASS),DSN=&&CPGM4,
// UNIT=SYSDA,
// DCB=(BLKSIZE=3120,LRECL=80,RECFM=FB),
// SPACE=(TRK,(2,1))
//SYSPRINT DD SYSOUT=*
//ERRREPT DD SYSOUT=*
//**
//
//* STEP 4: Preprocess the static command program by DB2
//* (DB2 Precompile)
//*
//**
//DB2PRE EXEC PGM=DSNHPC,COND=(0,NE,EZTPLUS),
// PARM='HOST(ASM),XREF ,SOURCE'
//STEPLIB DD DISP=SHR,DSN=&DB2LIB
//DBRMLIB DD DISP=SHR,DSN=&DBRMLIB(&DBRMNME)
//SYSIN DD DISP=(OLD,DELETE),DSN=&&CPGM1
// DD DISP=(OLD,DELETE),DSN=&&CPGM2
// DD DISP=(OLD,DELETE),DSN=&&CPGM3
// DD DISP=(OLD,DELETE),DSN=&&CPGM4
//SYSCIN DD DSN=&&DB2OUT,DISP=(NEW,PASS),
// UNIT=SYSDA,DCB=BLKSIZE=3120,
// SPACE=(TRK,(3,3))
//SYSUT1 DD SPACE=(800,(1000,1000)),UNIT=SYSDA
//SYSUT2 DD SPACE=(800,(1000,1000)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//**
//*
//* STEP 5: Assemble the static command program
//*
//**
//ASMCMD EXEC PGM=IEV90,COND=(0,NE,EZTPLUS),
// PARM='OBJECT,NODECK,RENT,LIST'
//SYSIN DD DISP=(OLD,DELETE),DSN=&&DB2OUT
//SYSLIN DD DISP=(MOD,PASS),DSN=&&LOADSET,
// UNIT=SYSDA,DCB=BLKSIZE=3120,
// SPACE=(TRK,(10,5))
//SYSLIB DD DISP=(NEW,DELETE),DSN=&&SYSLIB,
// UNIT=SYSDA,DCB=BLKSIZE=80,
// SPACE=(TRK,(1,1,1))
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
// SPACE=(TRK,(10,5))
//SYSPUNCH DD DUMMY
//SYSPRINT DD SYSOUT=*

EZTPDB2 Procedure

6–6 SQL Interface Option Guide

//**
//*
//* STEP 6: Link edit the static command program
//*
//**
//LINK EXEC PGM=IEWL,COND=(0,NE,ASMCMD) ,
// PARM='LET,LIST,CALL,RENT,MAP'
//SYSLIB DD DISP=SHR,DSN=&DB2LIB
//SYSLIN DD DISP=(OLD,DELETE),DSN=&&LOADSET
//SYSLMOD DD DISP=SHR,DSN=&EZTPPGM(&STCPGMN)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPRINT DD SYSOUT=*
//**
//*
//* STEP 7: Bind and grant authorization to the
//* static command program's application plan
//*
//**
//AUTH EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(0,NE,ASMCMD)
//STEPLIB DD DISP=SHR,DSN=&RUNLIB
// DD DISP=SHR,DSN=&DB2MLIB
//DBRMLIB DD DISP=SHR,DSN=&DBRMLIB
//SYSPRINT DD SYSYOUT=*
//SYSTSPRT DD SYSYOUT=*
//SYSOUT DD SYSYOUT=*
//REPORT DD SYSYOUT=*
//*
// PEND

Execution JCL

The sample execution JCL is installed as member DB2BINDX into your
SAMPJCL dataset. DB2BINDX executes the EZTPDB2 procedure shown on the
previous pages. Step EXTPGO requires you to provide values for the program
name to execute and the required libraries needed for STEPLIB.
//jobname JOB accounting.info,USER=userid,COND=(8,LT)
//**
//*
//* STEP A: Execute the EZTPDB2 procedure
//*
//**
//EZTPDB2 EXEC EZTPDB2,
// DBRMLIB='your.dbrmlib'
// DB2LIB='your.DB2.loadlib',
// RUNLIB='your.DB2.runlib',
// EZTPLIB='your.eztp.loadlib',
// EZTPPGM='your.linked.eztpgm.loadlib,
// PSQLLIB='your.pansql.loadlib',
// DBRMNME='dbrmname',
// STCPGMN='static.command.program.name'
//**
//*
//* DD statements for STEP 1 - EZT Compile
//*
//**
//EZTPLUS.SYSIN DD *
PARM LINK(eztpgm) PLAN (planname stcpgmn) BIND STATIC-ONLY ...
 ... CA-Easytrieve Plus source statements ...
/*

EZTPDB2 Procedure

Executing Your SQL Program 6–7

//**
//*
//* DD statements for STEP 7 - - Bind and Grant
//*
//**
//AUTH.SYSTSIN DD *
 DSN SYSTEM(ssid)
 BIND PLAN(planname) MEMBER(dbrmname) -
 ACT(REPLACE) ISOLATION(CS)
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIADs)
 END
/*
//AUTH.SYSIN DD *
 GRANT EXECUTE ON PLAN planname TO PUBLIC;
/*
//**
//*
//* STEP B: Execute the linked EZTP program
//*
//**
//EZTPGO EXEC PGM=eztpgm
//STEPLIB DD DSN=your.EZTPLIB.dataset,DISP=SHR
// DD DSN=your.EZTPPGM.dataset,DISP=SHR
// DD DSN=your.PSQLLIB.dataset,DISP=SHR
// DD DSN=your.DB2LIB.dataset,DISP=SHR
//SYSPRINT DD SYSOUT=*
//EZTVFM DD UNIT=SYSDA,SPACE=(CYL,(1,5))
// ... Other DD statements as needed by the program

Procedure Overrides

Procedure Action

DBRMLIB Must name a library to contain the DBRM for the CA-Easytrieve
Plus static application plan.

DB2LIB Names your IBM DB2 load library that contains the program
DSNHPC.

RUNLIB Names your IBM DB2 runlib containing the program DSNTIAD.

EZTPLIB Names the CA-Easytrieve Plus loadlib.

EZTPPGM Names a user loadlib to contain the linked CA-Easytrieve Plus
program and the static command program.

PSQLLIB Names your Pan/SQL load library.

EZTPDB2 Procedure

6–8 SQL Interface Option Guide

Procedure Action

DBRMNME Identifies the DBRM.

STCPGMN Identifies the generated static command program. The name must
match the stcpgmn specified on the PARM statement in your
CA-Easytrieve Plus program source. If no stcpgmn is specified on
the PARM statement, STCPGMN must be the same as the
planname specified on the PARM statement.

JCL Modifications

AUTH.SYSTSIN binds the STATIC SQL program plan.

■ Change ssid to reference the default DB2 for OS/390 and z/OS subsystem
you are using.

■ Change planname to be the same value you specified on the PARM statement.

■ Change dbrmnme to be the same value you specified on the DBRMNME
parameter of the procedure overrides.

■ Change DSNTIADs to reference the correct PLAN for the DB2 for OS/390
and z/OS utility program DSNTIAD.

AUTH.SYSIN grants access to the static SQL program plan to PUBLIC. Change
planname to be the same as that specified on the BIND for AUTH.SYSTSIN.

Step DP2PRE ends with a return code of 4. This is a normal operation.

Mixed IMS and DB2 for OS/390 and z/OS Execution

If your CA-Easytrieve Plus program accesses an IMS database and DB2 for
OS/390 and z/OS database, you should run your program under the control of
DB2-DL/I BATCH SUPPORT.

This ensures synchronization of checkpoints and rollbacks across both IMS and
DB2 for OS/390 and z/OS.

Under this control, SQL COMMITs and SQL ROLLBACKs are not permitted.

To do this, change your execution JCL to execute Module DSNMTV01 instead of
EZTPA00 or your linked application program. DSNMTV01 then loads the real
program.

EZTPDB2 Procedure

Executing Your SQL Program 6–9

The following is sample JCL:
//EZIMSDB2 EXEC PGM=DFSRRC00,
// PARM='DLI,DSNMTV01,PSBNAME,,,,,,,,,,O,N,N,'
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
// DD DSN=IMSVS.PGMLIB,DISP=SHR
// DD DSN=your.ibm.db2.sspgm.library,DISP=SHR
// DD DSN=your.eztp.loadlib,DISP=SHR
// DD DSN=your.pansql.loadlib,DISP=SHR
//IMS DD DSN=IMSVS.PSBLIB,DISP=SHR
// DD DSN=IMSVS.DRDLIB,DISP=SHR
//SYSOUT DD SYSOUT=*
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//DDOTV02 DD DSN=&&TEMP,DISP=(NEW,PASS),SPACE=(TRK,(5,5),

 UNIT=SYSDA,DCB=(RECFM=VB,LRECL=4092,BLKSIZE=4096)
//DDITV02 DD *
 SSN,LIT,ESMT,RTT,ERR,CRC,CONNECTION_NAME,PLAN,PROG
/*
//SYSIN DD *
 CA-Easytrieve Plus statements follow
 .
 .
 .
/*
//

Note: Under the control of DB2 for OS/390 and z/OS or DLI batch support,
your STEPLIB must define the IMS RESLIB before the DB2 for OS/390 and z/OS
library.

The DDITV02 DD defines the following parameters:

Parameter Description

SSN DB2 for OS/390 and z/OS subsystem

LIT Language Interface token value

ESMT Initialization module name, must be DSNMIN10

RTT Resource Translation Table

ERR Region Error Option

CRC Command Recognition Character

CONNECTION_NAME A unique one-to eight-character name

PLAN DB2 for OS/390 and z/OS plan name

PROG Application program name to execute—either
EZTPA00 or linked program name.

Refer to your IBM DB2 guides for a detailed explanation of these parameters.

DB2 for VSE Execution

6–10 SQL Interface Option Guide

DB2 for VSE Execution
The following example illustrates the JCL necessary to execute CA-Easytrieve
Plus with DB2 for VSE.

VSE JCL
* $$ JOB JNM=jobname
// JOB jobname
// UPSI b
// DLBL EZTP,'your.eztp.library'
// EXTENT ,volser
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL SORTWK1,,0
// EXTENT SYS001,volser,,,start,lgth
// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,lgth
// DLBL SQLLIB,'your.pansql.library',0,SD
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(SQLLIB.sublib,EZTP.sublib)
// EXEC EZTPA00,SIZE=512K
PARM USERID('user-id' 'password')
 ... CA-Easytrieve Plus SQL/DS source statements ...
/*
* $$ EOJ

Note: When executing a CA-Easytrieve Plus program withDB2 for VSE, no JCL
changes are required for Multiple User Mode. For the Single User Mode of DB2
for VSE, you should specify the SIZE=(AUTO,xxxK) parameter on your JCL
EXEC statement, where xxxK is the amount of storage required for normal
CA-Easytrieve Plus execution. The xxxK value is usually between 256K and
512K.

CA-IDMS/SQL Execution
The following example illustrates the OS/390 and z/OS JCL to execute
CA-Easytrieve Plus with IDMS/SQL under central version.

OS/390 and z/OS JCL
//jobname JOB accounting.info
//stepname EXEC PGM=EZTPA00
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=your.idms.loadlib
// DD DISP=SHR,DSN=pansql.idms.loadlib
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//SYSCTL DD DISP=SHR,DSN=idms.sysctl
//SYSIDMS DD DISP=SHR,DSN=your.sysidms.parm.file
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSIN DD *
 ...CA-Easytrieve Plus source statements ...
/*

CA-IDMS/SQL Execution

Executing Your SQL Program 6–11

Note: To run in local mode, you must make the CA-IDMS dictionary and
database available to CA-Easytrieve Plus through IDMS Dynamic Allocation
services by defining them in the DMCL or through DD statements in the JCL.

VSE JCL

The following example illustrates the VSE JCL to execute CA-Easytrieve Plus
with IDMS/SQL under central version.
* $$ JOB JNM=jobname
// JOB jobname
// UPSI b
// DLBL EZTP,'your.eztp.library'
// EXTENT ,volser
// DLBL IDMS,'idms.library'
// EXTENT ,volser
// DLBL SQLLIB,'your.pansql.library'
// EXTENT ,volser
// DLBL SYSIDMS,'your.idms.sysidms.file'
// EXTENT ,volser
// DLBL SYSCTL,'your idms.sysctl.file'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(EZTP.sublib,SQLLIB.sublib,IDMS.sublib)
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL SORTWK1,,0
// EXTENT SYS001,volser,,,start,length
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,length
// EXEC EZTPA00
 ... CA-Easytrieve Plus source statements ...

Note: To run in local mode, you must make the CA-IDMS dictionary and
database file available to CA-Easytrieve Plus. This can be done either through
IDMS dynamic allocation service in the DMCL or by specifying DLBLs in the
JCL.

CA-Datacom/SQL Execution

6–12 SQL Interface Option Guide

CA-Datacom/SQL Execution
The following example illustrates the JCL necessary to compile and go with
CA-Datacom/SQL.

OS/390 and z/OS JCL
//jobname JOB accounting.info
//stepname EXEC PGM=EZTPA00,REGION=512K
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=your.pansql.loadlib
// DD DISP=SHR,DSN=your.datacom.CUSLIB
// DD DISP=SHR,DSN=your.datacom.CAILIB
//SYSPRINT DD SYSOUT=A
//SYSSNAP DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//userfile DD dd-parms
//SYSIN DD *
 ... CA-Easytrieve Plus source statements ...

VSE JCL Examples

The following example illustrates the JCL necessary to compile and go with
CA-Datacom/SQL.
* $$ JOB JNM=jobname
// JOB jobname
// DLBL EZTP,'your.eztp.library,0,SD
// EXTENT SYS003,volser,1,0,start,lgth
// ASSGN SYS003,nnn
// DLBL SQLLIB,'your.pansql.library'
// EXTENT ,volser
// DLBL DATACOM,'your.datacom.library'
// EXTENT ,volser
// LIBDEF *,SEARCH(EZTP.sublib,SQLLIB.sublib,DATACOM.sublib)
// ASSGN SYSOUT,...
// ASSGN SYS010,...
// ASSGN SYS008,...
// DLBL SORTWK1,,0,DA
// EXTENT SYS001,volser,,,start,lgth
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,lgth
// DLBL INREC,,0,SD
// EXTENT SYS008,volser,,,start,lgth
// EXEC EZTPA00,SIZE=512K
 CA-Easytrieve Plus source statement
/*
/&
* $$ EOJ

ORACLE Execution

Executing Your SQL Program 6–13

ORACLE Execution
The following JCL illustrates how to run a CA-Easytrieve program with
ORACLE.

ORACLE JCL
//jobname JOB accounting.info
//stepname EXEC PGM-EZTPA00,REGION-512K
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=your.oracle.pansql.loadlib
// DD DISP=SHR,DSN=your.oracle.SQLLIB
// DD DISP=SHR,DSN=your.oracle.CMDLOAD
//SYSPRINT DD SYSOUT=A
//SYSSNAP DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//userfile DD dd-parms
//SYSIN DD *
 CA-Easytrieve Plus source statements

Examples 7–1

Chapter

7 Examples

The following examples illustrate the functions of the various SQL statements.

For information concerning %SQLTABLE, see the Sample Database section in the
“Library Section Definition” chapter.

Automatic Retrieval

Automatic Retrieval: All Columns

The code in the following example retrieves all columns and all rows from the
PERSONNEL table. A report is generated showing WORKDEPT, EMPNAME,
and EMPPHONE. The report is sorted by WORKDEPT.
%SQLTABLE .
JOB INPUT SQL
 SELECT * FROM PERSONNEL +
 INTO :EMPNAME, :WORKDEPT, :EMPPHONE :NULLPHONE
 IF NULLPHONE < 0 .* PHONE PRESENT?
 EMPPHONE = 0 .* NO, SET TO 0
 END-IF
 PRINT PERSNL
REPORT PERSNL LINESIZE 65
 SEQUENCE WORKDEPT
 LINE WORKDEPT EMPNAME EMPPHONE

Automatic Retrieval: Selected Columns

The code in the following example retrieves all rows of selected columns from
the PERSONNEL table and generates a report showing WORKDEPT and
EMPNAME. SQL orders the rows by WORKDEPT.
%SQLTABLE .
JOB INPUT SQL
 SELECT EMPNAME, WORKDEPT +
 FROM PERSONNEL +
 ORDER BY WORKDEPT +
 INTO :EMPNAME, :WORKDEPT
 PRINT PERSNL
REPORT PERSNL LINESIZE 65
 LINE WORKDEPT EMPNAME

Automatic Retrieval

7–2 SQL Interface Option Guide

Automatic Retrieval: Multiple Tables

The code in the following example retrieves an employee name and the
corresponding department name from the PERSONNEL and DEPARTMENTS
tables. The PARM statement parameters are needed only for DB2 for VSE
processing.
PARM USERID('SQLDBA' 'SQLDBAPW') +
 PREPNAME(EASYPLUS 'SQLDBA')
%SQLTABLE .
JOB INPUT SQL
 SELECT EMPNAME, DEPTNAME +
 FROM PERSONNEL, DEPARTMENTS +
 WHERE WORKDEPT = DEPTNUMBER +
 INTO :EMPNAME, :DEPTNAME
 PRINT PERSNL
REPORT PERSNL LINESIZE 65
 LINE EMPNAME DEPTNAME

Automatic Retrieval: SQL FILE

The following example demonstrates the use of an SQL file as automatic input in
a JOB activity. Also, it demonstrates the use of the SQL catalog INCLUDE
facility.

Note: The host variables on the select-clause cannot reference the table name.
DEFINE NULLPHONE W 2 B 0
FILE FILES SQL +
 (SELECT * FROM PERSONNEL +
 INTO :EMPNAME, :WORKDEPT, :EMPPHONE :NULLPHONE)
SQL INCLUDE LOCATION * FROM PERSONNEL
JOB INPUT FILES
 IF NULLPHONE < 0
 EMPPHONE = 0
 END-IF
 PRINT PERSNL
REPORT PERSNL LINESIZE 65
 SEQUENCE WORKDEPT
 LINE WORKDEPT EMPNAME EMPPHONE

Automatic Retrieval

Examples 7–3

Automatic Retrieval: SQL FILE

The following example demonstrates the use of an SQL file as automatic input in
a JOB activity. The select-clause is not coded on the FILE statement. The SELECT
statement must be coded immediately following the JOB statement. In this
example, the select-clause can reference the table name as a host variable.

Note: The DEPTNAME field is a VARYING field.
FILE FILES SQL
 SQL INCLUDE LOCATION * FROM DEPARTMENTS
JOB INPUT FILES
 SELECT * FROM DEPARTMENTS +
 INTO :DEPARTMENTS
 PRINT DEPT
REPORT DEPT LINESIZE 65
 SEQUENCE DEPTNUMBER
 LINE DEPTNUMBER DEPTNAME

Automatic Retrieval: SQL FILE Using SQL Functions

The following example shows using the SQL-supplied functions COUNT, AVG
and SUM to produce information for use in the program.
 FILE FILES SQL
 SQL INCLUDE LOCATION * FROM PERSONNEL
*
 NUM-IN-DEPT W 4 P 0
 AVG-SALARY W 4 P 2
 TOT-SALARY W 4 P 2
*
JOB INPUT FILES
 SELECT WORKDEPT, COUNT(*), AVG(SALARY), SUM(SALARY) +
 FROM PERSONNEL +
 GROUP BY WORKDEPT +
 HAVING DEPT < 80 +
 INTO :WORKDEPT, :NUM-IN-DEPT, :AVG-SALARY, :TOT-SALARY
 ...

Automatic Retrieval: SQL FILE With NULL Indicators

The following example shows how to test for null indicators with the SQL
INCLUDE statement. An indicator array is coded following the SQL INCLUDE.
The indicator array occurs four times because there are 4 columns being defined
through the SQL INCLUDE. In this case, only the third field is tested for NULL.
FILE FILES SQL
 SQL INCLUDE LOCATION * FROM PERSONNEL
*
INDARRAY W 2 B 0 OCCURS 4. * Null indicator array
*
JOB INPUT FILES
 SELECT * FROM PERSONNEL +
 INTO :PERSONNEL :INDARRAY
 IF INDARRAY(3) < 0. * Is the phone number(3rd column)null?
 ...

Automatic Retrieval

7–4 SQL Interface Option Guide

Automatic Retrieval: SQL FILE With Synchronized File Processing

The following example demonstrates using synchronized file processing to
match a selected group of SQL rows to a flat file.
FILE PERSNL
 EMP# 9 5 A
 NAME 17 16 A
*
FILE PERSDB2 SQL +
 (SELECT DISTINCT NAME, EMPNO, REGION, ADDRSTREET +
 FROM DEMO.PERSNL +
 WHERE REGION IN ('2') +
 ORDER BY EMPNO +
 INTO :NAME, :EMPNO, :REGION, :ADDRSTREET)
 SQL INCLUDE LOCATION * FROM DEMO.PERSNL
*
 JOB INPUT (PERSNL KEY (EMP#) +
 PERSDB2 KEY (EMPNO))
*
 IF MATCHED
 ...

Note: SQL INCLUDE LOCATION * must be coded after SELECT with
Synchronized File Processing.

Controlled Retrieval

Examples 7–5

Controlled Retrieval

Native SQL: All Columns

The code in the following example retrieves all columns from the PERSONNEL
table. The PARM statement parameters are needed only for DB2 for VSE
processing.
PARM USERID('SQLDBA' 'SQLDBAPW') +
 PREPNAME(EASYPLUS 'SQLDBA')
%SQLTABLE .
SQL DECLARE CURSOR1 CURSOR FOR +
SELECT * +
 FROM PERSONNEL
JOB INPUT NULL
* BELOW FOR SQL/DS ONLY
 SQL CONNECT :SYS-USERID IDENTIFIED BY :PASSWORD
 PERFORM CHECKSQL
* ABOVE FOR SQL/DS ONLY
 SQL OPEN CURSOR1
 PERFORM CHECKSQL
 DO WHILE SQLCODE NE 100
 SQL FETCH CURSOR1 +
 INTO :EMPNAME, :WORKDEPT, :EMPPHONE :NULLPHONE
 PERFORM CHECKSQL
 IF NULLPHONE < 0 .* PHONE PRESENT?
 EMPPHONE = 0 .* NO, SET TO 0
 END-IF
 IF SQLCODE NE 100 .* NOT END OF TABLE
 PRINT PERSNL
 END-IF
 END-DO
 SQL CLOSE CURSOR1
 PERFORM CHECKSQL
 STOP
CHECKSQL.PROC
 IF SQLCODE NE 0 AND SQLCODE NE 100
 DISPLAY 'SQLCODE = ' SQLCODE
 STOP EXECUTE
 END-IF
END-PROC
REPORT PERSNL LINESIZE 65
 LINE EMPNAME WORKDEPT EMPPHONE

Controlled Retrieval

7–6 SQL Interface Option Guide

Native SQL: Reassign Departments

The code in the following example reassigns all employees in department 901 to
department 109 and displays the names of those employees involved. The PARM
SSID is necessary only if you want to access a DB2 for OS/390 and z/OS
subsystem other than the default.
PARM SSID('DB2B')
%SQLTABLE .
SQL DECLARE CURSOR1 CURSOR FOR +
SELECT EMPNAME +
 FROM PERSONNEL +
 WHERE WORKDEPT = 901 +
 FOR UPDATE OF WORKDEPT
JOB INPUT NULL
 SQL OPEN CURSOR1
 PERFORM CHECKSQL
 DO WHILE SQLCODE NE 100
 SQL FETCH CURSOR1 +
 INTO :EMPNAME
 PERFORM CHECKSQL
 IF SQLCODE NE 100 .* NOT END OF TABLE
 PRINT PERSNL
 SQL UPDATE PERSONNEL +
 SET WORKDEPT = 109 +
 WHERE CURRENT OF CURSOR1
 PERFORM CHECKSQL
 END-IF
 END-DO
 SQL CLOSE CURSOR1
 PERFORM CHECKSQL
 STOP
CHECKSQL.PROC
 IF SQLCODE NE 0 AND SQLCODE NE 100
 DISPLAY 'SQLCODE = ' SQLCODE
 STOP EXECUTE
 END-IF
END-PROC
REPORT PERSNL LINESIZE 65
 LINE EMPNAME

Controlled Retrieval

Examples 7–7

Native SQL: Update Phone Numbers

The following example illustrates the installation of a new phone system. All
phone numbers have become five digits. The first character has become seven (7)
and the remaining digits are the same as the old phone system.

If an employee did not previously have a phone number, his record is not
updated. No update report is necessary.
JOB INPUT NULL
 SQL UPDATE PERSONNEL +
 SET EMPPHONE = 70000 + EMPPHONE +
 WHERE EMPPHONE IS NOT NULL
 PERFORM CHECKSQL
 STOP
CHECKSQL. PROC
 IF SQLCODE NE 0 AND SQLCODE NE 100
 DISPLAY 'SQLCODE = ' SQLCODE
 STOP EXECUTE
 END-IF
END-PROC

Controlled Retrieval

7–8 SQL Interface Option Guide

Native SQL: SQL FILE

The following example demonstrates the use of an SQL file as controlled input.

Note: The SQL FILE has the options of DEFER and DBCSCODE specified.

The SQL cursor (that is automatically defined) is not opened until the first GET
statement is issued, thereby permitting the host variable in the into clause of the
select-clause to initialize.

Note: The no-more-rows condition (EOF) could have been tested in various
ways.
DEFINE DEPTNO W 3 P 0
FILE FILES DEFER DBCSCODE IBM +
 SQL +
 (SELECT * FROM PERSONNEL +
 WHERE DEPTNUMBER > :DEPTNO +
 INTO :EMPNAME, :WORKDEPT, :EMPPHONE :NULLPHONE)
SQL INCLUDE LOCATION * FROM PERSONNEL START START-UP
JOB INPUT NULL
 GET FILES
 IF EOF FILES . *COULD HAVE BEEN: IF SQLCODE = 100
 *OR IF FILES:FILE-STATUS = 100
 STOP
 END-IF
 IF NULLPHONE < 0
 EMPPHONE = 0
 END-IF
 PRINT PERSNL
START-UP. PROC
 DEPTNO = 945
END-PROC
REPORT PERSNL LINESIZE 65
 SEQUENCE WORKDEPT
 LINE WORKDEPT EMPNAME EMPPHONE

 Index–1

 Index

A

access module, 2-5

ALLOCATE locators, 1-2, 5-7

ASSOCIATE cursors, 1-2, 5-7

automatic retrieval, 7-1

C

CALL statement, 5-6

catalog INCLUDE facility, 3-1

controlled retrieval, 7-5

D

data types, 3-7, 3-8

DB2 for OS/390
execution, 6-1
revision summary, 1-2
static-command-program, 2-4

DB2 for VSE
execution, 6-10
parameters, 2-5

DDITV02 DD, 6-9

default access module, 2-5

DSNMTV01, 6-8

E

End-of-File (EOF), 4-7

EVEN precision, 3-8

execution under TSO, 6-3

EZTPA00, 6-8

F

FILE statement, 4-2

G

GET statement, 5-1

H

host variables, 3-1

I

IMS and DB2 for OS/390 execution, 6-8

INCLUDE facility, 3-1

J

JOB statement, 4-3

Index–2 SQL Interface Option Guide

M

manual NULL processing, 3-6

mixed IMS and DB2 for OS/390 execution, 6-8

N

native
database statements, 5-2
SQL commands, 3-1, 5-1

null data value, 3-6

O

ORACLE execution, 3-1, 6-12

P

PAN$SQL statement, 6-2

PARM statement parameters, 2-2

PLAN parameter, 2-4

planname, 2-4, 6-2

PREPNAME parameter, 2-5

processing NULLable fields, 3-6

programming methods, 1-3

Q

qualifying DB2 for OS/390 tables, 2-7

S

sample database, 3-12

SELECT statement, 4-4

select-clause, 4-3, 4-6, 4-7, 5-1

specifying automatic input, 4-1

SQL
catalog, 3-1
communications area fields, 3-9
data types, 3-7
execution, 6-10, 6-11
INCLUDE statement, 3-2
statement rules, 1-3

SQLID parameter, 2-4, 2-7, 2-8

SQLSYNTAX parameter, 2-3

SSID
DB2 for OS/390, 2-4, 6-2
DB2 for VSE, 2-5

static application plan, 6-1

subsystem ID, specifying for execution, 6-2

synchronized file, 4-2

system-defined file fields, 3-9

T

TSO execution, 6-2, 6-3

U

unique access module, 2-5

units of work, 2-1

USERID parameter, 2-5

W

working storage fields, 3-1

	Advantage CA-Easytrieve Plus SQL Interface Option Guide
	Contents
	Chapter 1: Overview
	Topics
	Related Publications
	Revision Summary for DB2 for OS/390 and z/OS Elements
	Programming Methods
	Native SQL Statements
	Automatic Cursor Management

	SQL Statement Rules

	Chapter 2: Program Environment
	Units of Work
	PARM Statement Parameters
	All SQL Environments
	SQLSYNTAX FULL
	SQLSYNTAX PARTIAL
	SQLSYNTAX NONE

	DB2 for OS/390 and z/OS
	SQLID
	SSID Parameter
	Static SQL

	DB2 for VSE
	USERID
	PREPNAME
	SSID

	CA-Datacom/DB
	PLANOPTS
	PREPNAME

	ORACLE
	USERID
	SSID

	CA-IDMS
	USERID

	Qualifying DB2 for OS/390 and z/OS Tables
	Qualification with Automatic Processing
	DYNAMIC SQL
	STATIC SQL

	Qualification with Controlled Processing
	DYNAMIC SQL
	STATIC SQL

	SQL Error Handling
	SQL Error Message Format
	DB2 for OS/390 and z/OS, DB2 for VSE, and ORACLE
	CA-Datacom
	CA-IDMS

	SQL Error Message Text
	DB2 for OS/390 and z/OS
	DB2 for VSE
	ORACLE
	CA-Datacom
	CA-IDMS

	Chapter 3: Library Section Definition
	SQL Catalog INCLUDE Facility
	SQL INCLUDE Statement
	Syntax
	Parameters
	Notes
	Field Reference
	Qualifying SQL Column Names

	Processing NULLable Fields
	Manual NULL Processing

	SQL Data Types
	Decimal Data Types
	SQL Syntax Checking

	System-Defined File Fields
	RECORD-COUNT
	RECORD-LENGTH

	SQL Communications Area Fields
	Sample Database
	Working Storage Definitions

	Chapter 4: Automatic Processing
	Specifying Automatic Input
	FILE Statement
	JOB Statement
	SELECT Statement
	Generated Code

	Chapter 5: Controlled Processing
	GET Statement
	Syntax

	Native SQL
	Syntax
	Usage Notes
	Processing Requirements
	Operation

	CALL Statement
	CALL Syntax: Format 1
	CALL Syntax: Format 2

	CALL, ASSOCIATE, and ALLOCATE

	Chapter 6: Executing Your SQL Program
	DB2 for OS/390 and z/OS Execution
	Dynamic SQL Mode
	Static SQL Mode
	Sample Job Stream

	PAN$SQL DD File
	EZTPDB2 Procedure
	Execution JCL
	Procedure Overrides
	JCL Modifications
	Mixed IMS and DB2 for OS/390 and z/OS Execution

	DB2 for VSE Execution
	CA-IDMS/SQL Execution
	CA-Datacom/SQL Execution
	ORACLE Execution

	Chapter 7: Examples
	Automatic Retrieval
	Automatic Retrieval: All Columns
	Automatic Retrieval: Selected Columns
	Automatic Retrieval: Multiple Tables
	Automatic Retrieval: SQL FILE
	Automatic Retrieval: SQL FILE
	Automatic Retrieval: SQL FILE Using SQL Functions
	Automatic Retrieval: SQL FILE With NULL Indicators
	Automatic Retrieval: SQL FILE With Synchronized File Processing

	Controlled Retrieval
	Native SQL: All Columns
	Native SQL: Reassign Departments
	Native SQL: Update Phone Numbers
	Native SQL: SQL FILE

	Index

